		Mark	Comment	
1(i)		B1 B1 B1	Acc and dec shown as straight lines Horizontal straight section All correct with v and times marked and at least one axis labelled. Accept (t, v) or (v, t) used.	3
(ii)	Distance is found from the area area is $\frac{1}{2} \times 10 \times 15+20 \times 15+\frac{1}{2} \times 5 \times 15$ (or $\frac{1}{2} \times(20+35) \times 15$) $=412.5$ so distance is 412.5 m	M1 A1 A1	At least one area attempted or equivalent uvast attempted over one appropriate interval. Award for at least two areas (or equivalent) correct Allow if a trapezium used and only 1 substitution error. FT their diagram. cao (Accept 410 or better accuracy)	3

		mark		sub
2	either 70 V obtained So $70 \mathrm{~V}=1400$ and $V=20$ or $V=20$	A1 M1 A1 M1 A1 M1 A1	Attempt at area. If not trapezium method at least one part area correct. Accept equivalent. Or equivalent - need not be evaluated. Equate their 70 V to 1400 . Must have attempt at complete areas or equations. cao Attempt to find areas in terms of ratios (at least one correct) Correct total ratio - need not be evaluated. (Evidence may be 800 or 400 or 200 seen). Complete method. (Evidence may be 800/40 or 400/20 or 200/10 seen). cao [Award $3 / 4$ for 20 seen WWW]	
				4

		mark		Sub
3(i)	$\frac{-15}{6}=-2.5 \text { so }-2.5 \mathrm{~m} \mathrm{~s}^{-2}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of $\Delta v / \Delta t$. Condone use of v / t. Must have - ve sign. Accept no units.	2
(ii)	$\frac{1}{2} \times 10 \times 4=20 \mathrm{~m}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Attempt at area or equivalent	2
$\begin{array}{\|l} \text { (iii } \\ \text {) } \end{array}$	Area under graph is $\frac{1}{2} \times 5 \times 5=12.5$ (and -ve) closest is $20-12.5=7.5 \mathrm{~m}$	M1 A1	May be implied. Area from 4 to 9 attempted. Condone missing -ve sign. Do not award if area beyond 9 is used (as well). cao	2
				6

		mark		
4(i)	Area under curve $\begin{aligned} & 0.5 \times 2 \times 20+0.5 \times(20+10) \times 4+0.5 \times 10 \times 1 \\ & =85 \mathrm{~m} \end{aligned}$	M1 B1 A1	Attempt to find any area under curve or use const accn results Any area correct (Accept 20 or 60 or 5 without explanation) cao	3
(ii)	$\begin{aligned} & \frac{20-10}{4}=2.5 \\ & \text { upwards } \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	```\(\Delta v / \Delta t\) accept \(\pm 2.5\) Accept - 2.5 downwards (allow direction specified by diagram etc). Accept 'opposite direction to motion'.```	3
(iii)	$\begin{aligned} & v=-2.5 t+c \\ & v=20 \text { when } t=2 \\ & v=-2.5 \mathrm{t}+25 \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	Allow their a in the form $v= \pm a t+c$ or $v= \pm a(t-2)+c$ cao [Allow $v=20-2.5(t-2)$] [Allow $2 / 3$ for different variable to t used, e.g. x. Allow any variable name for speed]	3
(iv)	Falling with negligible resistance	E1	Accept 'zero resistance', or 'no resistance' seen.	1
(v)	$\begin{aligned} & -1.5 \times 4+9.5 \times 2+7=20 \\ & -1.5 \times 36+9.5 \times 6+7=10 \\ & -1.5 \times 49+9.5 \times 7+7=0 \end{aligned}$	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	One of the results shown All three shown. Be generous about the 'show'.	2
(vi)	$\begin{aligned} & \int_{2}^{7}\left(-1.5 t^{2}+9.5 t+7\right) d t \\ & =\left[-0.5 t^{3}+4.75 t^{2}+7 t\right]_{2}^{7} \\ & =\left(-\frac{343}{2}+\frac{19 \times 49}{4}+49\right)-(-4+19+14) \\ & =81.25 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Limits not required A1 for each term. Limits not required. Condone $+c$ Attempt to use both limits on an integrated expression Correct substitution in their expression including subtraction (may be left as an expression). cao.	
	total	19		

Follow through between parts of Question 5 should be allowed for the value of h (when $t=10$) found in part (iii) if it is used in part (iv) or in part (v)(A).

5	(i)	Integrate a to obtain v $\begin{aligned} & v=10 t-\frac{1}{2} t^{2} \quad(+c) \\ & t=10 \Rightarrow v=100-50=50 \end{aligned}$ Since $a=0$ for $t>10, v=50$ for $t>10$	M1 A1 M1 A1 [4]	Attempt to integrate Substitution of $t=10$ to find v Sound argument required for given answer. It must in some way refer to $a=0$.	
	(ii)	Continuous two part v-t graph Curve for $0 \leq t \leq 10$ Horizontal straight line for $10 \leq t \leq 20$	B1 B1 B1 [3]	The graph must cover $t=0$ to $t=20$ B0 if no vertical scale is given	

5	(iii)		$\begin{aligned} & \text { Distance fallen }=\int\left(10 t-\frac{1}{2} t^{2}\right) \mathrm{d} t \\ & \qquad d=5 t^{2}-\frac{1}{6} t^{3}+c \quad(c=0) \\ & \text { Height }=1000-d \\ & \text { Height }=1000-5 t^{2}+\frac{1}{6} t^{3} \\ & \text { When } t=10, h=667 \end{aligned}$	M1 A1 A1 B1 [4]	Attempt to integrate This mark should only be given if the signs are correctly obtained. oe	
	(iv)		Time at constant vel $=667 \div 50=13.3$ Total time $t=10+13.3=23.3$	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \quad[2] \\ & \hline \end{aligned}$	FT for h from part (iii) FT	
	(v)	A	Since $500>333$ The box will have reached terminal speed. So there is no improvement	M1 A1 [2]	For finding the height at which the crate reaches terminal velocity, eg $h=167$, or equivalent relevant calculation. FT for h from part (iii) if used. Allow either one (or both) of these two statements.	
	(v)	B	$\begin{aligned} & \hline v=10 t-t^{2} \quad \text { (for } t \leq 5 \text {) } \\ & \text { Terminal velocity is } 25 \mathrm{~m} \mathrm{~s}^{-1} \\ & \text { So better } \end{aligned}$	M1 A1 A1 [3]	Integration to find v	

		mark	comment	sub
6(i)	The distance travelled by P is $0.5 \times 0.5 \times t^{2}$ The distance travelled by Q is $10 t$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Accept $10 t+125$ if used correctly below.	2
(ii)	Meet when $0.25 t^{2}=125+10 t$ so $t^{2}-40 t-500=0$ Solving $t=50 \text { (or -10) }$ Distance is $0.25 \times 50^{2}=625 \mathrm{~m}$	M1 F1 A1 A1	All their wrong expressions for P and Q distances Allow ± 125 or 125 omitted Award for their expressions as long as one is quadratic and one linear. Must have 125 with correct sign. Accept any method that yields (smaller) + ve root of their 3 term quadratic cao Allow -ve root not mentioned cao [SC2 400 m seen]	
		7		

